\(\int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [555]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 180 \[ \int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {6 (A b+a B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 (7 a A+5 b B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 b B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (A b+a B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (7 a A+5 b B) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \]

[Out]

2/7*b*B*sin(d*x+c)/d/sec(d*x+c)^(5/2)+2/5*(A*b+B*a)*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/21*(7*A*a+5*B*b)*sin(d*x+c
)/d/sec(d*x+c)^(1/2)+6/5*(A*b+B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c
),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2/21*(7*A*a+5*B*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2
*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.226, Rules used = {3039, 4081, 3872, 3854, 3856, 2719, 2720} \[ \int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 (a B+A b) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (7 a A+5 b B) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 (7 a A+5 b B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {6 (a B+A b) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)} \]

[In]

Int[((a + b*Cos[c + d*x])*(A + B*Cos[c + d*x]))/Sec[c + d*x]^(3/2),x]

[Out]

(6*(A*b + a*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*(7*a*A + 5*b*B)*Sqr
t[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*b*B*Sin[c + d*x])/(7*d*Sec[c + d*x]^
(5/2)) + (2*(A*b + a*B)*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (2*(7*a*A + 5*b*B)*Sin[c + d*x])/(21*d*Sqrt[S
ec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3039

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(
d + c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4081

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.)
 + (A_)), x_Symbol] :> Simp[A*a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n)), x] + Dist[1/(d*n), Int[(d*Csc[e + f*x
])^(n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B},
 x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(b+a \sec (c+d x)) (B+A \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 b B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}-\frac {2}{7} \int \frac {-\frac {7}{2} (A b+a B)-\frac {1}{2} (7 a A+5 b B) \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 b B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}-(-A b-a B) \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)} \, dx-\frac {1}{7} (-7 a A-5 b B) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 b B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (A b+a B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (7 a A+5 b B) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {1}{5} (3 (A b+a B)) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx-\frac {1}{21} (-7 a A-5 b B) \int \sqrt {\sec (c+d x)} \, dx \\ & = \frac {2 b B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (A b+a B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (7 a A+5 b B) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {1}{5} \left (3 (A b+a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx-\frac {1}{21} \left ((-7 a A-5 b B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {6 (A b+a B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 (7 a A+5 b B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 b B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (A b+a B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (7 a A+5 b B) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.39 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.69 \[ \int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\sqrt {\sec (c+d x)} \left (252 (A b+a B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 (7 a A+5 b B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+(70 a A+65 b B+42 (A b+a B) \cos (c+d x)+15 b B \cos (2 (c+d x))) \sin (2 (c+d x))\right )}{210 d} \]

[In]

Integrate[((a + b*Cos[c + d*x])*(A + B*Cos[c + d*x]))/Sec[c + d*x]^(3/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(252*(A*b + a*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 20*(7*a*A + 5*b*B)*Sqrt[Co
s[c + d*x]]*EllipticF[(c + d*x)/2, 2] + (70*a*A + 65*b*B + 42*(A*b + a*B)*Cos[c + d*x] + 15*b*B*Cos[2*(c + d*x
)])*Sin[2*(c + d*x)]))/(210*d)

Maple [A] (verified)

Time = 12.43 (sec) , antiderivative size = 413, normalized size of antiderivative = 2.29

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (240 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +\left (-168 A b -168 B a -360 B b \right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (140 a A +168 A b +168 B a +280 B b \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-70 a A -42 A b -42 B a -80 B b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+35 a A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-63 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b +25 B b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-63 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a \right )}{105 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(413\)
parts \(-\frac {2 a A \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {2 \left (A b +B a \right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {2 B b \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (48 \left (\cos ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-120 \left (\cos ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+128 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-72 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(590\)

[In]

int((a+cos(d*x+c)*b)*(A+B*cos(d*x+c))/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8*
b+(-168*A*b-168*B*a-360*B*b)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(140*A*a+168*A*b+168*B*a+280*B*b)*sin(1/2
*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-70*A*a-42*A*b-42*B*a-80*B*b)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+35*a*A
*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-63*A*(sin
(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b+25*B*b*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-63*B*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a)/(-2*sin(1/2*d*x+1
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 203, normalized size of antiderivative = 1.13 \[ \int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {5 \, \sqrt {2} {\left (7 i \, A a + 5 i \, B b\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-7 i \, A a - 5 i \, B b\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 63 \, \sqrt {2} {\left (-i \, B a - i \, A b\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 63 \, \sqrt {2} {\left (i \, B a + i \, A b\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (15 \, B b \cos \left (d x + c\right )^{3} + 21 \, {\left (B a + A b\right )} \cos \left (d x + c\right )^{2} + 5 \, {\left (7 \, A a + 5 \, B b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{105 \, d} \]

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

-1/105*(5*sqrt(2)*(7*I*A*a + 5*I*B*b)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*sqrt(2)*(-
7*I*A*a - 5*I*B*b)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 63*sqrt(2)*(-I*B*a - I*A*b)*wei
erstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 63*sqrt(2)*(I*B*a + I*A*b)*we
ierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(15*B*b*cos(d*x + c)^3 + 2
1*(B*a + A*b)*cos(d*x + c)^2 + 5*(7*A*a + 5*B*b)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d

Sympy [F]

\[ \int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \left (a + b \cos {\left (c + d x \right )}\right )}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c))/sec(d*x+c)**(3/2),x)

[Out]

Integral((A + B*cos(c + d*x))*(a + b*cos(c + d*x))/sec(c + d*x)**(3/2), x)

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)/sec(d*x + c)^(3/2), x)

Giac [F]

\[ \int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)/sec(d*x + c)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,\left (a+b\,\cos \left (c+d\,x\right )\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x)))/(1/cos(c + d*x))^(3/2),x)

[Out]

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x)))/(1/cos(c + d*x))^(3/2), x)